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Extended Abstract.  Although risk analyses often still assume independence among input 
variables as a matter of mathematical convenience, most analysts recognize that inter-
variable dependencies can sometimes have a substantial impact on computational results.  
In the face of epistemic uncertainty about dependencies, analysts occasionally employ a 
sensitivity study in which the correlation coefficient is varied between plausible values.  
This strategy is insufficient to explore the possible range of results however, as will be 
shown by simple examples.  Fortunately, comprehensive bounds on convolutions of 
probability distributions (or even bounds thereon) can be obtained using simple formulas 
that are computationally cheaper than Monte Carlo methods.  We review the use of these 
formulas in the cases of variously restricting assumptions about dependence, from no 
assumption at all, to specified sign of the dependence, to a particular dependence 
function.   
 
Some analysts argue that it is best to reduce any problem involving dependent variables 
into one with only independent variables.  This changes the problem of statistically 
representing dependent variables into a modeling problem of reproducing the functional 
or mechanistic relationships that induce the dependence.  It is not sufficient to transform 
the model into one in terms of uncorrelated variables;  they must be statistically 
independent variables.  Of course, this functional modeling approach could entail 
considerable effort far beyond the scope of the immediate assessment.  The extra 
modeling effort required by this strategy may not be workable in many situations.  For 
instance, a dam safety engineer worried about computing risks to a water control 
structure from hydrological factors influenced by weather patterns would need to model 
various meteorological and even climatological phenomena.  At some point, the 
analytical demands of a functional modeling approach will likely become prohibitive.   
 
There are three other approaches to the problem of accounting for dependence among 
variables: (i) assume a particular dependence function, (ii) make no assumptions about 
dependence, and (iii) relax assumptions to a partial specification of dependence.  In the 
first approach, one must assume a particular dependence function among the variables.  
Assuming independence is of course a special case of this approach.  Another special 
case is assuming perfect dependence among variables such that each variable is almost 
surely a monotonically increasing function of the other.  In general, the dependence 
function is specified as some copula (Nelsen 1999).  A copula is the function that 
characterizes how the marginal distributions are knitted together to form the joint 
distribution.  In the two-dimensional case, a copula is just a bivariate distribution function 
from the unit square onto the unit interval that has uniform marginals.  A bivariate 
distribution function F(x, y) can be expressed in terms of the copula C as C(F(x), G(y)) 
where F(x) and G(y) are its marginal distribution functions.  The dependence function 
could be specified by selecting a copula from a parameterized family of copulas such as 



the Frank, Mardia, normal or Clayton families (Nelsen 1999; Joe 1997).  It could also be 
specified with an empirical copula, which is an analog for dependence of an empirical 
distribution function. 
 
In risk analyses, distributions characterizing random variables are convolved together to 
estimate arithmetic functions (such as sums, products, differences, quotients, etc.) of the 
random variables.  For instance, if X and Y are random variables with distributions F and 
G respectively, the distribution of the sum Z = X+Y can be obtained with the Lesbesgue-
Steiltjes integral 
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which always exists.  This formulation includes the independence case where C(u,v) = uv.  
Similar formulas are available to compute distributions of products, differences, 
quotients, etc.  We describe a straightforward numerical procedure to compute �  given 
discretizations for the marginal distributions F and G and an arbitrary copula C.  The 
numerical methods extend easily to other arithmetic operations.  Note that this approach 
can handle arbitrarily complicated dependence between the input variables.  This makes 
the approach significantly more general than methods implemented in common risk 
analysis software packages which model correlations but not dependencies in general. 
 
The second approach to accounting for dependence is to make no assumptions whatever 
about the dependence between variables.  In this approach, bounds on the distribution of 
an arithmetic function can be computed directly using infimal and supremal convolution 
of the marginal distribution of the addends.  For example, if X and Y are random variables 
with marginal distributions F and G respectively, then the bounds on the distribution of Z 
= X+Y are 
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where the supremum gives the left bound on the distribution (i.e., the upper bound on the 
cumulative probability associated with any value of the sum z), and the infimum gives the 
right bound on the distribution function (the lower bound on the value of the cumulative 
probability).  These bounds satisfy a problem originally posed by Kolmogorov of finding 
bounds on the distribution of a sum given only distributions of the addends.  
Kolmogorov’s problem was solved by Makarov (1981) and Frank et al. (1987).  
Analogous bounds on distributions of products, differences, quotients, etc., can likewise 
be obtained from similar supremal and infimal convolutions of the marginal distributions 
of the factors, etc.  Williamson and Downs (1990) described convenient numerical 
algorithms to compute these bounds in a way that accounts for discretization error 
introduced by encoding the marginal distribution with a finite computer representation.  
With their algorithms, the bounding convolutions are generally much less expensive than 
ordinary convolution computed via Monte Carlo simulation.  The bounds obtained by the 



supremal and infimal convolutions are guaranteed to rigorously enclose all distributions 
that could arise for the sum (or product, etc.), no matter what dependence there may be 
between the addends (or factors, etc.).  Furthermore, these bounds are also best possible, 
that is, they are as tight as can be justified without any knowledge about the dependence.  
The breadth between the bounds characterizes the specificity of the answer under the 
relaxed dependence assumption.  It is interesting that these bounds cannot be obtained 
with the standard �-convolution described above such as by varying the correlation 
between +1 and �1.  Even varying the dependence function C between perfect 
dependence (maximal correlation and comonotonicity) and opposite dependence 
(minimal correlation and countermonotonicity) will generally underestimate the breadth 
of the bounds.  The difference is due to nonlinear dependencies which are ignored by 
merely varying correlations between extreme values.  This approach can be combined 
with independence assumptions, so that some variables are assumed to be independent 
and no assumptions are made about the dependence between other variables. 
 
The third approach to account for dependence in risk assessments is to make some 
qualitative or quantitative assumptions about the dependence function that partially 
specify the copula.  For instance, a promising approach to tighten risk calculations is to 
make use of information about the sign of the dependence between the variables.  The 
most common notion of sign dependence is positive quadrant dependence (PQD).  
Random variables X and Y with distribution functions F and G whose joint distribution is 
H are PQD if H(x, y) � F(x) G(y) for all x and y, so that if the probability that the random 
variables are both small (or large) is at least as great as if they were independent.  There 
are several conditions that imply variables will be PQD, including when each is a 
stochastically increasing function of the other, i.e., P(Y > y | X=x) is a non-decreasing 
function of x for all y, and P(X > x | Y=y) is a non-decreasing function of y for all x.  
Positive quadrant dependence implies non-negative Pearson, Spearman and Kendall 
correlations, although the mere observation that a correlation is positive does not imply 
the variables are PQD.  This idea has been used in many statistical and engineering 
settings, and seems to capture one sense analysts have in mind when they use the phrase 
‘positively depends’. 
 
Risk assessments can make use of assumptions about the sign of the dependence among 
variables with easy-to-compute convolutions.  For example, bounds for a sum of PQD 
variables whose marginals are F and G are 
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These bounds are similar to the supremal and infimal convolutions in the sense that they 
are guaranteed to bound the distribution function of the sum and are the tightest possible 
such bounds given only the marginal distributions F and G and the positivity of their 
dependence.  Note that these formulas give bounds that are not the same as an envelope 
of the perfect and independent convolutions (which would be narrower).  There are 
similar formulas for the other arithmetic operations, as well as complementary formulas 



that assume negative quadrant dependence (variables X and Y are negatively quadrant 
dependent if X and �Y are positively quadrant dependent).  The intersection of the 
convolution bounds for positive and negative dependencies is not the same as the bounds 
obtained under independence.   
 
One could also make a quantitative assumption about dependence such as that the 
correlation coefficient has a particular magnitude.  In such cases, convolutions between 
distributions can be computed using mathematical programming, although it turns out 
that specifying only the correlation often provides very little improvement in the 
specificity of the result.  For example, assuming that random variables X and Y are 
uncorrelated (that is, have Pearson correlation coefficient equal to zero) produces almost 
no improvement over the bounds obtained by the supremal and infimal convolutions. 
 
The three approaches described above give analysts considerable flexibility to account 
for knowledge and uncertainty about correlations and dependencies.  By making more 
assumptions, one can increase specificity of the answers that can be obtained.  In a 
sensitivity analysis, of course, an analyst often desires to relax his assumptions and 
explore how the results might vary in consequence.  It is possible to mix strategies so that 
one could posit independence among some variables, assume particular copulas for some 
variables, and make limited or no assumptions about the dependence among other 
variables.  This allows an analyst to obtain a sensitivity analysis that reflects which is 
well known about dependencies and what is in contention about them. 
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